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Abstract—TalkWithMachines aims to enhance human-robot
interaction in safety-critical industrial systems by integrating
large/vision language models with robot control and perception.
This allows robots to understand natural language commands
and perceive their environment. Translating robots’ internal
states into human-readable text allows operators to gain clearer
insights for safer operations. The paper outlines four workflows:
low-level control, language-based feedback, visual input, and
robot structure-informed task planning, which are presented
in a set of experiments. The proposed approach outperforms
the prior method in grasping (0.00m error, 100% success vs.
0.01m, 90%) and obstacle avoidance (0.018m error, 50% success
vs. 0.05m, 30%). Supplementary materials are available on the
project website: https://talk-machines.github.io.

Index Terms—large/vision language models, autonomous sys-
tems, interpretable robotics.

I. INTRODUCTION

Recent research on autonomous systems increasingly em-
phasizes interpretability, especially in safety-critical sectors.
This has led to exploring natural human-machine interactions,
like low-level control via human language ([1], [2]). How-
ever, traditional methods are still preferred for safety-critical
systems. Despite limitations in providing reliable outputs, the
Large Language Model (LLM) and Vision Language Model
(VLM) show promise as communication layers between hu-
mans and robots ([3]–[6]), encouraging research into their use
for robotic control and interpretability ([7]).

We build on recent advances in LLMs and VLMs to
explore their potential for robotic manipulation and perception,
focusing on language-based low-level control and verbalizing
machine states. Though often used for high-level planning
([8]) or coding platforms ([9], [10]), LLMs as general pat-
tern machines have shown capability for generating low-level
control strategies ([1], [11]). Consequently, our objectives
concentrate on two less-explored areas: (i) language-based
low-level control, and (ii) interpreting machine states and
actions. Our study uses a robotic arm simulation to propose
an improved interface for human-robot communication.

We address key questions in the robotics domain, including:
(i) Can LLMs generate low-level control patterns and create
complex trajectories from natural language instructions? (ii)
Can LLMs maintain situational awareness, detect anomalies,
and make decisions based on observation? (iii) Does image

User: Move towards the object
Robot: I am moving towards the object…

State (St)
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Fig. 1. Proposed framework: human-robot interaction interface from language
to command and visual environment perception to human language.

sequence processing through VLM enhance situational aware-
ness? (iv) Can Unified Robot Description Format (URDF) and
environmental constraints help LLMs/VLMs recognize unsafe
command execution?

II. STATE-OF-THE-ART

LLMs like GPT-4 show promise in control and automation
([12]), yet challenges in low-level control, real-time decision-
making, and safety persist. Existing reviews ([13]) on foun-
dation models for robotics neglect safety aspects. This paper
addresses these gaps by illustrating how LLMs and VLMs
can translate language into low-level, context-aware actions,
enhancing robot adaptability and safety.

In high-level planning, while LLMs can generate complex
actions from multimodal inputs ([14]), [15] demonstrate how
LLMs can interpret language and environmental cues for real-
time, adaptive decisions beyond fixed skill sets. In perception,
previous research has explored visual feedback and spatial
awareness ([16], [17]). This paper utilizes VLMs for situa-
tional awareness, enabling robots to analyze their environment
and robot’s structure for context-driven decisions.

Although LLMs excel in code generation for task planning
([6], [18]), they often fail in creating low-level control trajec-
tories. While prior research ([1], [2]) has shown language-
to-action translation, [11] highlights LLMs’ general ability
to process arbitrary symbol sequences, applied in tasks like
trajectory generation.

This paper shows how these models make informed deci-
sions, interpret indirect cues, and maintain situational aware-
ness. Experimental results focus on developing interpretable,
safe, human-centric robotic systems, validated through sim-
ulated robotic arm manipulation and human-robot commu-
nication. Table I compares qualitatively with state-of-the-art
approaches.
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TABLE I
QUALITATIVE COMPARISON TO STATE-OF-THE-ART METHODS

Method Task
Plan

Motion
Plan

Adapt-
able

Explain-
able

Inter-
active

Fine-
tune

SayTap [1] No Yes Partial Yes No Partial
GPT-4 [2] Yes Partial Yes Limited Limited No
ChatGPT [6] Yes No Yes Partial Yes Partial
Monologue [8] Yes No Yes Yes Yes Partial
ReAct [19] Yes No Yes Partial Yes Yes
RT-2 [20] Yes Yes Yes Partial Partial Yes
VoxPoser [21] Yes Partial No No Yes Yes
Ours Yes Yes Yes Yes Yes Partial

III. METHODOLOGY

This section outlines the methodology for addressing LLM-
based robot control and robot state feedback. First, it covers
the communication framework bridging human language with
control and perception. Then, it defines movement descriptions
and pattern rules for translating human commands into low-
level control. Finally, it specifies the prompt structures used
in the study.

A. Framework

The evaluation framework for LLMs in robotic manip-
ulation and perception, shown in Fig. 1, enables users to
input text and/or image prompts to GPT-4 via a Python
client. Parsed GPT-4 output yields control commands, which
are sent through a ROS industrial controller to a Gazebo
simulation, selected for its simulation-to-reality transfer ease.
Visual or textual simulation observations are then fed back to
GPT-4, which generates human-readable responses. The LLM
serves dual roles: interpreting control and perception, allowing
parallel operations or using LLM perception as a safety check
alongside conventional control methods.

B. Movement Descriptions and General Pattern Rules

Robot movement patterns are represented by X , Y , Z, and
G. Each axis value is -1, 0, or 1 for negative, no, or positive
movement, while G values (0 or 1) represent gripper states
(open or closed) as defined in Equation 1.

M =


X
Y
Z
G

 , X, Y, Z ∈ {−1, 0, 1}, G ∈ {0, 1} (1)

where;
M: Movement command vector,
X, Y, Z: Movement (Left/Right, Fwd/Bwd, Up/Down),
G: Gripper state (0 = open, 1 = closed)

C. Prompt Structures

The proposed methodology develops language-based con-
trol concepts and verbalized machine states to enhance human-
robot communication, aiming to improve operator experience.
The approach bridges human language with low-level robot
control for tasks such as object grasping, moving, placing,
obstacle avoidance, and more. LLM-assisted control and task

interpretation were examined incrementally (see Fig. 2), with
progressively added input information to support LLM-based
reasoning and control. The following section details these
input increments.

1) Baseline Control Prompt Structure: The baseline prompt
structure, inspired by [1], begins with defining the LLM’s role.
After establishing movement primitives, tasks are defined in
human language using the pattern rules. Outputs are specified
through example-based fine-tuning (few-shot prompting). The
structure is illustrated in the top row of Fig.2.

2) Context-Aware Perception: Verbalized Current Machine
States: Beyond language-based robot control, a key objective
in safety-critical applications is to perceive the environment
and adapt actions accordingly. We propose using LLMs/VLMs
to (i) capture machine and environment states as percep-
tion, and (ii) communicate these states to the operator. In
a second set of experiments, the baseline control prompt
(Section III-C1) is expanded to include internal (e.g., end-
effector position, velocity, force) and external (e.g., scene,
object, grasp) states. This added information enhances the
LLM’s internal mental model of robot and context. Verbalizing
this model provides transparency in robot operations, as shown
in the second row of Fig. 2.

3) Added Perception Through Visual Information: The
robot simulation (see Section III-A) can be visualized through
one or multiple images, showing the robot’s pose/state from
an external viewpoint. These images provide vision-based
perception in the prompt, supplementing text-based movement
input. Image frames and text-based observations are captured
incrementally per time step and passed to the LLM/VLM after
task completion or predefined intervals. For robustness, frames
from multiple viewpoints are stacked horizontally, forming
organized image rows. This multimodal input structure is
illustrated in the third row of Fig. 2.

4) Enhancing Awareness to Robot Structure: Incorporat-
ing information on the robot’s physical structure enhances
the LLM’s understanding of internal states and degrees of
freedom, enabling it to generate more accurate, executable
task plans for its capabilities and limitations. This structural
information can be integrated by (i) using a URDF model or
a technical specification sheet, and/or (ii) through visual rep-
resentations of the robot’s physical structure and environment.

Fig. 2. Prompt structures with incrementally added information, facilitating
LLM-based reasoning and robot control. Blue indices refer to the experiments
in Section V.



IV. DESIGN OF EXPERIMENTS

The experimental design is divided into two primary cat-
egories: (i) LLM-based control and (ii) LLM/VLM-based
perception, emphasizing situational and structural awareness.

A. Language-Based Control

Validation scenarios for language-based control include (i) a
grasping task and (ii) a grasping task with obstacle avoidance.
Initial observations, including object type and position, are
provided as prompts before task execution.

B. Perception

Perception is validated for control and safety in tasks such
as (i) pick-and-place and (ii) grasping with obstacle avoidance.
This involves assessing action consequences, interpreting the
environment, and identifying object placements with real-
world objects and environmental properties. To enhance spatial
awareness, we include the robot URDF (from an xml file)
and a textual environment description, with prompts for initial
observations.

We use VLM to process time-incremental image frames
from external viewpoints. These experiments feature multiple
views, highlighted robot/object parts, and specific volumes
(e.g., a safe zone). Examples of single- and multi-view cases
are shown (Fig. 3), depicting a robot manipulating a red object
in a gray safe zone. Highlights aid VLM in reasoning and help
users track the time evolution of actions.

V. EXPERIMENTS

This section addresses the research questions from Section
Ithrough experiments structured as in Fig. 2.

A. Baseline Language-Based Control

These experiments focus on (i) control pattern optimization
and (ii) text-based control using initial environmental obser-
vations.

1) Baseline Control Pattern: For low-level control, we
adapted a control pattern from [1] for robot manipulation. The
full prompt structure is available in the project repository’s
supplementary material1.

Baseline control experiments, excluding environmental ob-
servations, evaluated prompt structure and control patterns.

1https://talk-machines.github.io

Fig. 3. Multi-view evolution of a grasping task, generated as a frame stack.

TABLE II
COMPARISON WITH THE PRIOR ART’S CONTROL PATTERN GENERATION

STRATEGY.

Task SayTap [1] Ours
Time
(s)

Error
(m)

Success Time
(s)

Error
(m)

Success

Grasping 6.90 0.01 0.90 6.10 0.00 1.00
Obstacle
avoidance

5.84 0.05 0.3 6.82 0.018 0.5

These included general movement, grasping, and obstacle-
avoidance tasks.

2) Improved Control Pattern: The baseline control pattern
had limitations, including (i) prompt generation time, (ii)
lower accuracy (cm scale), and (iii) higher failure rates due to
redundancy and memory issues. Improvements were made by
(i) altering the pattern to include multiples of 0s, 1s, or -1s and
(ii) segmenting the trajectory into steps, as supported by [2].
This resulted in (i) faster response, (ii) higher accuracy (mm
scale), (iii) lower failure rate, and (iv) better generalization for
complex functional tasks as shown below:

Experiment: Circular movement
Input: Move in a circle
Output: X: [cos(t) for t in range(360)]

Y: [sin(t) for t in range(360)]
Z: [0]*360
G: [0]*360

Experiment: Obstacle avoidance
Input: Move in a pattern to avoid an obstacle in a path and

pick the cube on the right
Output: X: [0]*10 + [1]*50 + [0]*10 + [0]*1

Y: [0]*71
Z: [1]*10 + [0]*50 + [-1]*10 + [0]*1
G: [0]*70 + [1]*1

3) Comparative Analysis: We compare the improved con-
trol pattern with the baseline from SayTap ([1]) in Table II,
focusing on grasping and obstacle avoidance tasks. Average
pattern generation time, goal error, and task success rate were
measured over 10 runs, with variations in prompt structure,
grasped object, end effector, and obstacle positions. Both
methods used consistent test prompts. Results show that, while
TalkWithMachines generates slower, more complex trajecto-
ries, it achieves better spatial accuracy and a higher success
rate in obstacle avoidance.

B. Context Aware Reasoning and Verbalized Machine States

These experiments highlight text-based perception before or
during manipulation, allowing LLMs to request clarification if
commands are incomplete or environmental details are missing
(e.g., unobserved objects or risky actions). Additionally, the
LLM can summarize planned actions step-by-step, indicating
the validity of each step.

Experiment: Obstructed position avoidance
Input: place the grasped red cube to position [-270, 190,

30] with observation = [[110, 490, 140], [-170, 190,
30], [-270, 190, 30]]

Output: Given the current position of the end effector with
the grasped red cube at [-170, 190, 30], and the
desired location to place the red cube at [-270, 190,

https://talk-machines.github.io


30], the end effector needs to move from its current
position to the desired location. However, there is a
blue cube already present at the desired location
[-270, 190, 30]. Placing the red cube at this location
would result in the red cube penetrating the blue
cube, which is not possible as the cubes are solid and
impenetrable. Therefore, this action is not possible.
Please provide a different location to place the red
cube. Let me know if you need help with anything else.

LLM can also reason about possible outcomes based on object
and scene real-world attributes:

Experiment: Awareness of real-world attributes
Output: Moving the red cube to the yellow zone would be

dangerous as the red cube is made of wood and the
yellow zone represents fire. This could potentially
start a fire. Therefore, this action is not
recommended. Here’s the explanation:

The red cube is made of wood, which is a combustible
material.

The yellow zone represents fire, which can ignite
combustible materials.

Moving the red cube to the yellow zone could potentially
start a fire, causing a dangerous situation.

So, I would advise against performing this action. Safety
should always be the top priority when operating
robotic systems. Please provide another task that
doesn’t involve potential hazards.

Input: Move the blue cube to the yellow zone
Output: Given the environmental constraints and the

properties of the objects, moving the blue cube (made
of ice) to the yellow zone (representing fire) would
be dangerous as it could cause the ice to melt.
Therefore, I cannot provide a control pattern for this
action. It’s crucial to ensure the safety of the
environment and respect the real-world properties of
the objects. Please provide another task that doesn’t
violate these properties.

C. Added Context via Image-based Inputs

These experiments test VLMs for spatial awareness and
anomaly detection. Initially, we use a single visual stack of
frames, as illustrated in Fig. 4. The full prompt is available in
the project repository’s supplementary material2.

Region of Interest for Enhanced Accuracy An enlarged
view of a specific region helps identify failure cases, whereas
a distant view is insufficient for task completion.

D. Robot Structure Awareness via URDF import

We introduced structural perception through URDF (Uni-
versal Robotic Description Format) (see Fig. 2), defining
each robot component’s shape and limits. This allowed the
LLM to understand the robotic arm’s structure. A hierarchical
visualization of the robot was generated using LLM-created
Mermaid code, resulting in an accurate 10-level representation
of the physical structure (not shown).

2https://talk-machines.github.io

Output: Collision imminent.
Reason: End effector descends, force negative.

Fig. 4. Perception via image-based observations and text descriptions.

Output: **No collision, safe grasp.**
Reason: **Cube aligns with gripper path.**

Output: Collision imminent.
Reason: Cube misaligned, end effector close.

Fig. 5. Perception with far-away (top) and enlarged view (bottom) of a region
of interest.

E. Experiments using the complete workflow D

Using workflow D (Fig. 2), which integrates image, text, and
URDF-based data for scene and robot structure, we conducted
additional experiments.

1) Operation within a Safe Zone: A cuboid safe zone,
defined by text and image-stack prompts as an environmental
constraint, was tested. Correct VLM responses in two scenar-
ios are shown in Fig. 6.

2) Obstacle Avoidance: Fig. 7 shows obstacle avoidance
task execution using only human language and URDF input.
The LLM infers the need for obstacle avoidance from the
observation list alone, even without explicit instructions.

3) Stacking Operation: In the successful task demonstra-
tion (Fig. 8), multiple spatial reasoning steps are executed:
reaching and grasping the object, lifting it to a safe height,
and placing it atop another object based on the positional and
dimensional data in the input observations.

4) Pick and Place Into a Zone: The successful task execu-
tion in Fig. 9 involves placing an object within a user-defined
zone, using information from the initial observation list.

Output: Collision imminent.
Red cube misaligned; wall proximity.

Fig. 6. Spatially-aware task executions via text (scene+URDF) and visual
inputs, using a single-viewpoint frame stack.

Input: Move towards the object. <observation list>

Fig. 7. Result from image sequence showing a successful end effector
approach while avoiding an obstacle (black object).

https://talk-machines.github.io


Input: Move the red cube on top of the blue cube.
<observation list>

Fig. 8. Result of a stacking task, shown as a generated image sequence.

Input: Grasp the red cube and place it in zone A.
<observation list>

Fig. 9. Result of the task execution moving an object into a zone.

5) Attribute-based Object Sorting into Respective Zones:
In this example, control pattern generation incorporates real-
world object and scene attributes to make sorting decisions,
simulating an industrial sorting scenario with complex deci-
sion logic. The LLM’s foundational world knowledge elimi-
nates the need for explicitly defined logic rules.

Input: Move the cubes to the zones
Output: Given the physical properties of the cubes and the

zones, it would be hazardous to move the red cube
(Fire) to the green zone (Forest) as it could
potentially cause a fire. Similarly, moving the blue
cube (Ice) to the yellow zone (Fire) would not be
appropriate as the ice would melt. Therefore, I will
provide a control pattern that safely moves the red
cube to the yellow zone and the blue cube to the green
zone.

Control Pattern for Red Cube (Fire) to Yellow Zone (Fire):
generated control sequence (not shown in detail)

Control Pattern for Blue Cube (Ice) to Green Zone (Forest):
generated control sequence (not shown in detail)

Observed failure modes: Overall, tasks involving spatial
interaction with a few objects (e.g., the end effector, one
target, and an obstacle) were consistently successful. However,
failures in spatial reasoning occurred when handling multiple
closely spaced objects or strict spatial constraints (e.g., a tight
safety zone). Enhancing spatial resolution, such as using a
zoomed-in view (Fig. 5), helped reduce these failures.

VI. CONCLUSIONS AND FUTURE WORK

This paper explores integrating large language and vision-
language models to improve human-robot interaction. In
robotic arm simulations, LLMs generated control commands,
interpreted environments, and communicated with users. Key
findings include their ability to design trajectories, recognize
constraints, and make decisions. Future work focuses on real-
world applications, real-time perception, and self-learning,
aiming for interpretable and safe human-robot collaboration.
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